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A B S T R A C T

Land use assessment is among the practical purposes of soil classification. Several researches has been specifi-
cally focused on the use of conventional surveys in the evaluation of soil suitability for agriculture products
whose quality is influenced by the interactions between soil, plants and the biological stock of the rhizosphere.
Our aim was to expand the application of the soil suitability protocol by relating soil types with biodiversity and
the ecological equilibria of biological communities. This goal can be pursued by combining the approaches to
soil type delineation with the techniques of quantitative ecology that are based on the similarity theory. Given
the qualitative scale of several field-recorded attributes make their numerical processing difficult, we focused on
numerical techniques for multivariate sets of data to combine with geostatistics. We thought these techniques
would originate local soil classes meaningful in terms of both soil processes and soil suitability evaluation. Since
auger boring data are formally comparable to vegetation data, we tested Goodall's and Burnaby's pairwise si-
milarity indexes: the former assumes that pairs of observations sharing an infrequent value are more similar than
pairs which share more frequent values; the latter considers associations among attributes, giving higher weights
to independent ones.

We did an intensive soil survey in a 1200-ha flood plain of the Istria region, Croatia. The morphological
characteristics of soil cores were recorded and analysed to produce pairwise similarities that were partitioned by
hierarchical clustering into similarity vectors. Such vectors were in the end submitted to geostatistical analysis
for the drawing up of similarity maps. Both similarity measures originated five partially overlapping clusters that
were consistent with the main soil forming processes present in the investigated area. Goodall's index gave the
most meaningful results, fulfilling three compulsory requirements for soil mapping: i) similarity vectors were
meaningful in terms of fluvial dynamics; ii) similarities displayed a structured spatial variability; and, iii) si-
milarity maps were consistent with the soil forming factors acting in the investigated area. The results obtained
indicate that Goodall's similarity index could be currently used in soil suitability evaluation, allowing to better
exploit field-recorded data and to extend its application to the relations existing between soil types and the
ecological equilibria of biological communities.

1. Introduction

From its beginnings, land use assessment was among the practical
purposes of soil classification: Whitney (1909) explicitly defined soil
types – the lower level of his three-tired classification system – as
homogeneous units in terms of agricultural production. This interest
was formalized in the FAO framework for land evaluation (FAO, 1976),
after which several researches focused on the suitability of soil for
agriculture products whose quality is influenced by the interactions
between soil, plants and the biological stock of the rhizosphere. The
most part of them adopted the following investigation sequence: i) soil

mapping at a semi-detailed to detailed spatial scale; ii) field trials to
compare product quality from different soil types; iii) partition of soil
types into suitability classes; and, iv) organization of map units into a
hierarchy system related to the production than can be achieved
(Vaudour, 2003; Bodin and Morlat, 2006; Costantini et al., 2012;
Vaudour et al., 2015).

This approach was partially extended to non-wood forestry pro-
ducts, like truffles, that are related to the suitability of soil to host ed-
ible ectomycorrhizal fungi (Bragato et al., 2010; Bragato and
Marjanović, 2016). A step forward might be that of relating soil types to
biodiversity and the ecological equilibria of biological communities.
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However, the extension of the soil suitability protocol to biological
communities interacting with soil is limited by the second step of the
procedure, which requires experimental conditions often fulfilled in
cultivated fields only.

Adjustments to FAO protocol could be pursued by considering the
specific characteristics of soil and biological community data, and by
combining the approaches to soil type delineation with the techniques
of quantitative ecology capable to classify observation data and com-
pare classification matrices (Orlóci, 1978; Podani, 2000). The com-
parison of classifications obtained with variables used to describe in-
dependently the same set of observations can be done using similarity
theory as a common basis (Feoli and Orlóci, 2011). Starting from the
paradigm of plant community studies that similar communities tend to
converge to similar physical-chemical environments, Feoli and Orlóci
(2011) suggested to test the variation within a set of plant communities
by comparing with the test of Mantel (Mantel, 1967; Mantel and
Valand, 1970) the similarity matrices of vegetation relevés separately
classified according to plant communities and environmental attributes,
an approach that Feoli et al. (2017) used to analyse the area-diversity
patterns among soils in South-East Spain.

Starting from these researches, we were aimed at testing if similarity
theory was applicable to the subset of environmental factors acting in
the pedosphere and that are considered in detailed soil surveys for soil
suitability evaluation. Since the comparison between similarity ma-
trices concerns the feature space, but soil classification must be also
coherent with the spatial pattern of soil forming processes, we sought to
ascertain whether it was possible to translate a local soil classification
in terms of pairwise similarity values that had significance both in the
feature space and the geographical space. Only when both requirements
are fulfilled, the comparison between similarity matrices might be used
correlating biological communities and soil environment.

Assuming soil as a complex natural body organized in components
of increasing complexity that are recorded in terms of the hierarchical
organization of soil categories (Hoosbeek et al., 1999), local relation-
ships between soil and biological communities may be investigated by
focusing on discrete, lower-level classes like soil series and phases (Soil
Science Division Staff, 2017) that delineate mutually exclusive soil
categories and map their spatial distribution as a set of non-overlapping
polygons. However, the partition of the soil continuum into lower-level
classes has to deal with the transition of classification criteria from
clear-cut genetic relationships to rules assessing the influence of local
factors and processes on soil characteristics and behaviour (Butler,
1980), and the shift from clear discontinuities in landforms to diffuse
vertical and lateral subsurface variations in the feature space (Burrough
et al., 1997). A further question is the lack of knowledge about local
relationships between soil classes and biological communities, which
can be addressed by delineating soil classes with no predefined diag-
nostic characteristics, thus avoiding to neglect meaningful soil-biolo-
gical community relationships.

All these questions had been addressed by partitioning soil into
continuous classes. Starting from fuzzy logic, McBratney and de
Gruijter (1992) proposed fuzzy k-means (FKM) to partition soil into
classes displaying a gradual variability in the feature space. Combined
with geostatistical techniques, FKM was effective in characterizing
continuous soil classes in the geographical space (McBratney et al.,
1992; Odeh et al., 1992; Triantafilis et al., 2001). When applied to
quantitative morphological attributes of auger boring data, the con-
sistent increase in the number of observations helped to formulate
spatial distribution models also useful for a locally oriented land use
planning (Verheyen et al., 2001; Bragato, 2004). The selection of hor-
izon sequences representative of continuous soil classes was also the
goal of Carré and Girard (2002) and Carré and Jacobson (2009). Fo-
cusing on the feature space, they implemented a dynamic fuzzy clus-
tering procedure that, after calculating a distance metrics over hor-
izons, allocates profiles to existing classes, or creates a new
classification of the profiles. These two lines of investigation were

incorporated in the bottom-up analytical sequence proposed by Odgers
et al. (2011a, 2011b) to partition the soil continuum into soil series
classes.

Since fuzzy clustering can be considered a logical extension of the
similarity theory (Feoli and Orlóci, 2011), the membership matrices
produced with fuzzy clustering could be used to compare soil types and
biological communities. However, since these approaches can only
process quantitative and binary attributes, their application narrows
the investigation to sets of data almost only obtained from soil profiles
that, due to high laboratory costs (see for instance Kempen et al., 2012),
consistently limit the sample size, resulting in a lower detail in the
geographical space and a loss of information on local soil forming
processes.

According to Bragato (2004), sample density can be increased by
exploiting the information obtained from less expensive auger boring
campaigns, which field-recorded attributes are expression of soil
forming processes like those listed by Bockheim and Gennadiyev
(2000). To be effective, this approach have to deal with the question
that auger boring recordings are composed by quantitative, nominal
and ordinal data – i.e. mixed data – that should be processed together.

Since auger boring data are formally comparable to vegetation data,
we focused our attention on pairwise similarity measures for mixed
data, specifically considering the similarity index of Goodall (1966) and
the similarity coefficient of Burnaby (1970). Goodall built a probabil-
istic index based on the assumption that a pair of observations sharing
an infrequent value is more similar than two which share a more fre-
quent one. Burnaby instead considered the associations among attri-
butes, giving higher weights to independent ones and introducing
probability in order to account for the frequency of occurrence of dif-
ferent attribute states.

At the time they were proposed, both methods were ignored be-
cause of the lack of a theoretical framework on multiple class mem-
bership and spatial variability. Their application was also limited by the
remarks of Gower (1970) who criticized their choice to give more

Fig. 1. Location of the investigated area.
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weight to rare events and the use of uncorrelated (Goodall, 1966) or
correlated but automatically weighted attributes (Burnaby, 1970).
Taking account of Gower's observations and the progress of fuzzy logic,
Goodall and Feoli (1991), and Carranza et al. (1998) set up software
tools that successfully tested both indexes in quantitative ecology in-
vestigations.

Our work started from the hypothesis that the theory of similarity
and the techniques of numerical analysis connected to it could form a
framework in which to insert local soil classifications that take into
account locally significant attributes. Our specific purposes were: i) to
test the usefulness of Burnaby's and Goodall's similarity measures when
processing mixed data from auger boring recordings; and, ii) to find

Fig. 2. Soil mapping units (SMUs) (grey areas) of the 1:50,000 soil map of Croatia, and sampling locations (black circles) in Čepić Polje. SMUs were classified in
relation to the drainage class: the darker the color, the slower the drainage. The bold line marks a cobbled road already present in 1820.
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which of the two measures was best suited for local soil classifications
and the assessment of their relationship with biodiversity and the local
ecological equilibria of biological communities. The ultimate goal was
to test an analytical sequence capable of emphasizing the effect of the
main soil forming processes, and delineating meaningful local soil
classes possibly characterized by gradual boundary transitions.

We did the investigation in a polje that was characterized by the
presence of the typical landforms of a fluvial landscape. The area was
chosen to fulfil the following criteria: i) the prevalent effect of few,
well-known soil forming processes; ii) the presence of historically re-
corded environmental modifications that the survey should outline;
and, iii) a gradual soil variability in space. The research took advantage
of the presence in the area of the subterranean ectomycorrhizal fungus
Tuber magnatum, a renown truffle species. Since this species is highly
selective for specific fluvial landforms and soils (Bragato and
Marjanović, 2016) and a previous research in the same polje outlined
such environmental connections (Bragato et al., 2010), we exploited the
environmental selectivity of T. magnatum to further examine the use-
fulness of the tested approach.

2. Materials and methods

2.1. Study area and soil survey

We did the investigation in the 1200-ha area of Čepić Polje
(55°19′06″N lat, 14°13′10″E long) (Fig. 1). It is a depressional flood
plain located in the eastern part of Istria (Croatia) characterized by a
north-east to south-west geological sequence of Cretaceous limestones
and Eocene turbidites. Čepić Polje is actually characterized by Holocene
depositions of soil materials eroded from turbidites and deposited by
River Boljunščica. According to 1:50,000 soil map of Croatia – Sheet 16
(Škorić et al., 1987) and the World Reference Base (IUSS Working
Group WRB, 2014), the main soil types in the slopes surrounding Čepić
Polje are Lithic Leptosols/Eutric Cambisols on limestones and Eutric
Regosols on turbidites. The fluvial plain is instead characterized by
three soil mapping units belonging to Eutric Regosols that can be placed
in a Fluvisol-Cambisol sequence (Fig. 2). Škorić et al. (1987) mainly
distinguished them on the basis of the depth of the water table because
the polje was partly occupied by a shallow lake until 1932, when it was
reclaimed thanks to an artificial tunnel that flowed water down into the
Adriatic Sea. The lake originated about 7000 years B.P. from a massive
colluvial discharge or, alternatively, a slope failure associated to a

major tectonic event (Balbo et al., 2006) that disconnected River Bol-
junščica from the neighbouring River Raša, which flows into the
Adriatic Sea about 20 km south-east of Čepić Polje.

According to the Köppen-Geiger classification (Kottek et al., 2006),
the climate of the area can be classified of type Cfb, i.e. warm tempe-
rate, fully humid with warm summer. In the 1961–2016 time interval,
the nearest weather station of Pazin recorded a mean annual tem-
perature of 11.4 °C – with mean minimum and maximum values of
2.8 °C and 21.0 °C in January and July, respectively – and a mean an-
nual rainfall of 1132mm, ranging from 69mm in July to 143mm in
November (Državni Hidrometeorološki Zavod, 2018).

The present study was based on auger boring recordings of an in-
tensive soil survey done in August 2005 to compare soils of areas
characterized by the presence or absence of T. magnatum (Bragato et al.,
2010). In that survey, 82 locations were located at the nodes of a
225× 450m rectangular grid that evenly covered the polje and further
50 locations were randomly selected in five transects. We specifically
used the data recordings of the systematic sampling and 23 locations on
transects, selected to investigate the spatial variability at distances
shorter than the grid mesh while limiting the uneven spatial distribu-
tion of locations in transects (Fig. 2). Each location was augered to a
depth of 100 cm, recording the sequence of horizons and, for each
horizon, thickness, matrix color, percentage of redoximorphic features
(RMFs) and texture class by the feel method. Eleven independent at-
tributes were selected to allow the comparison between similarity in-
dexes (Table 1).

2.2. Similarity measures

The similarity measures we considered were determined in two
steps: pairwise similarities/dissimilarities sjk/djk between observations j
and k were independently calculated for the ith attribute, then they
were combined to produce an overall pairwise similarity measure Sjk.

Goodall (1966) defined the dissimilarity djk as the probability that a
pair of observations (j,k) would be as different as they are if the two
observations simply constituted a random sample of attribute values
from the whole set. In practice, given a sample of n observations, djk is
estimated from the frequency distribution of the various states v of the
attribute in the set of n observations. When observations j and k have
the same state q, the computation of djk only depends on the proportion
pl of occurrence of q in the population.

=d pjk q Q l
2

(1)

where 1≤ q≤ v and Q is the set

=Q q p p{ : ( )}l j (2)

The computation of djk changes with the attribute scale when pairs
of observations with differing states are considered (see the Appendix of
Goodall, 1966). In nominal and binary attributes, they are all regarded
as equally dissimilar:

=d 1jk (3)

When attributes are ordinal, pairwise dissimilarities are ranked by
their probability of occurrence, and djk is calculated according to the
number of states lying between each pair of observations: the fewer
they are, the less dissimilar are observations. In case of quantitative
attributes, dissimilarities are ordered by the magnitude of the difference
between states and dissimilarity depends simply on the difference be-
tween the two values.

The separate probabilistic dissimilarities are then combined by
Fisher's transformation for continuous probabilities according to the
assumption that the states taken by m different attributes in the same
observation are independent

=
=

x d2 ln( )
i

m
jk i

2
1 (4)

Table 1
Descriptive statistics of the selected attributes (n= 105). For discrete attri-
butes, the frequency of occurrence fi of each discrete state is reported.

A. Discrete attributes

Attribute Type State fi
%

State fi
%

State fi
%

State fi
%

Prevailing hue Binary 2.5Y 27 10YR 73
Chroma, C horizon Binary /3 20 /4 80
2nd horizon Nominal No 24 AC 43 B 15 C1 18
Value, A horizon Ordinal 3/ 3 4/ 52 4.5/ 30 /5 15
Chroma, A horizon Ordinal /2 18 /3 55 /4 27
Value, C horizon Ordinal 2/ 6 3/ 74 4/ 20
Texture classa Ordinal SiL 44 SiCL 47 SiC 9

B. Continuous attributes

Attribute Mean Std. dev. Min Max

Thickness 2nd horizon, cm 23 17 0 65
Depth of RMFs, cm 62 26 10 100
Redox concentrations, % 6 10 0 60
Redox depletions, % 5 6 0 30

a SiL: silty loam; SiCL: silt clay loam; SiC: silty clay.

G. Bragato, et al. Catena 180 (2019) 169–182

172



where the quantity x2 is distributed as χ2 with 2m degrees of freedom
(Fischer, 1948).

When applied to discrete probabilities, Fisher's transformation is
affected by a positive bias that can be corrected following the sugges-
tions of Lancaster (1949).

= +
=

x d d d d d d2 {1 [( ) ln( ) ( ) ln( ) ]/[( ) ( ) ]}
i

m
jk i jk i jk i jk i jk i jk i

2
1

(5)

where (d'jk)i is the first smaller dissimilarity value next to (djk)i. The sum
of continuous and discrete probabilities is still distributed as χ2 with
2m degrees of freedom, and the probability of the χ2 value combines

dissimilarities. The overall pairwise similarity Sjk is in the end calcu-
lated as the complement to 1 of the χ2 value probability.

Burnaby's similarity coefficient (Burnaby, 1970) was reconsidered
and improved by Carranza et al. (1998). It is defined by the equation

=
= =

K w s I w I( ) ( ) / ( )jk i

m
i ij i jk i i

m
i jk i1 1 (6)

where wi is the weight assigned to the ith attribute on the basis of its
independence from all other attributes, and (Ijk)i is the information
weight of the states of the ith attribute in the couple of observations
under comparison. For ordinal and quantitative attributes, the wi is null
since the probabilities of quantiles are equal.

Fig. 3. Part of the 1:28800-scale chorography map of Istria and Dalmatia published in 1820. The bold line marks the cobbled road also reported in Fig. 1, at that time
located upstream of a marshy area at the mouth of River Boljunščica.
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The similarity (sjk)i assumes different states according to the scale of
the ith attribute. For nominal attributes, it is 1 if the attribute states
agree, 0 otherwise. For ordinal and quantitative attributes, it is calcu-
lated on the basis of

=s x x x x( ) 1 ( )/( )jk j k max min (7)

where x′j, x′k, x′max and x′min are quantile class marks calculated using

ranks of attribute states.
Burnaby suggested to always compute wi on 2×2 contingency ta-

bles, irrespective of the attribute scale. This result is achieved trans-
forming nominal attributes with vi states into vi binary attributes de-
scribing the presence-absence of each state. Ordinal and quantitative
attributes are instead transformed into quintiles and the χ 2 statistics is
computed on 2×2 contingency tables obtained by removing median
classes and grouping the remaining cells by tetrads. This suggestion was
strongly criticized by Gower (1970) but, when compared to other ways
of obtaining contingency tables from quantitative attributes, it gives
results closest to the product-moment correlation coefficient (Carranza
et al., 1998). The use of quantiles instead of other types of classes (i.e.
the classical equal range frequency classes) guarantees the equidis-
tribution of observations between classes, avoiding empty classes (for
instance in the case of bi- or multimodal distributions) or classes with
few elements (i.e. in the tails of the normal distribution).

Pairwise similarities were calculated with the programs Simil
(Goodall et al., 1991) and Burnaby (Carranza et al., 1998), disregarding
double zeros in the computation of Burnaby's coefficient. The resulting
similarity matrices were partitioned by hierarchical cluster analysis
using several clustering criteria (Podani, 2000). The classification
suggested by dendrograms was tested according to the permutation
technique proposed by Feoli et al. (2009), which consists in calculating
the evenness of the eigenvalues of the within/between similarity matrix
of the selected clusters, and finding the probability that the observed
evenness would be lower than that calculated by random allocation of
observations to clusters after n permutations – in this case n was set to
100,000. The sharpest and more significant classification resulting in
the lowest number of clusters was used to define fuzzy sets with the
method of Feoli and Zuccarello (1991). According to this method, the
degrees of membership to sets may be calculated by averaging the si-
milarity values within and between clusters. It is based on the idea that
a similarity matrix is a fuzzy set matrix in which similarity values are all

Fig. 4. Dendrograms of Burnaby's and Goodall's pairwise similarities obtained with the complete linkage clustering criterion.

Table 2
Contingency table of Burnaby's vs. Goodall's similarity index.
The χ2 value is 186.

Bu1 Bu2 Bu3 Bu4 Bu5

Go1 8 0 0 0 0
Go2 1 5 16 10 0
Go3 1 14 7 3 0
Go4 0 0 1 18 0
Go5 6 0 0 1 1

Table 3
Descriptive statistics of the five similarity vectors.

Cluster Mean Std. dev. Min Max Skewness Kurtosis

A. Burnaby's coefficient
Bu1 0.36 0.08 0.19 0.55 0.22 2.66
Bu2 0.43 0.09 0.24 0.62 0.24 2.43
Bu3 0.43 0.09 0.24 0.62 0.28 2.13
Bu4 0.38 0.10 0.18 0.55 −0.18 2.01
Bu5 0.36 0.09 0.19 0.57 0.43 2.65

B. Goodall's index
Go1 0.41 0.17 0.12 0.81 0.67 2.62
Go2 0.49 0.14 0.14 0.75 −0.32 2.84
Go3 0.48 0.17 0.15 0.77 −0.07 1.97
Go4 0.51 0.28 0.12 0.97 0.51 1.89
Go5 0.53 0.23 0.07 0.96 0.33 2.18
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degrees of belonging to the sets represented by the single objects to be
classified (Zhao, 1986; Marsili-Libelli, 1991; Feoli et al., 2009). All
procedures on similarity matrices were carried out with the package
MATEDIT (Burba et al., 2008).

2.3. Geostatistical analysis

The similarity values of the clusters obtained from similarity ma-
trices were interpolated with the geostatistical approach, which was
aimed at predicting the unknown value of a random variable Z(x) at an
unobserved location x0 using the values recorded at xα surrounding
sampling locations.

Interpolations were based on the intrinsic hypothesis (Journel and
Huijbregts, 1978):

=E Z x Z x[ ( ) ( )] 02 1 (8)

and

=E Z x Z x h[ ( ) ( )] 2 ( )2 2
2 (9)

where Z(x1) and Z(x2) are random variables at any two locations; h is
the separation vector between locations; and γ(h) is the semivariance.
The model applied to the scattergram of semivariances against distance
– i.e. to the experimental variogram – is used for the following inter-
polation step.

Most similarity vectors fulfilled assumption (8) and originated
variograms with a sill. Predictions were then obtained with the
Ordinary Kriging (OK) predictor (Goovaerts, 1997; Oliver and Webster,
2014):

=
=

Z x Z x( ) ( )
n

0 1 (10)

Fig. 5. Histograms of a pair of similarity vectors.

Table 4
Within/between similarity matrices. The W/B similarity ratios are obtained by
dividing the within cluster similarity on matrix diagonal by the average of
between cluster similarities on matrix columns.

A. Burnaby's coefficient

Bu1 Bu2 Bu3 Bu4 Bu5 W/B similarity ratio per cluster

Bu1 0.47 0.36 0.38 0.31 0.31 1.39
Bu2 0.36 0.55 0.42 0.33 0.38 1.47
Bu3 0.38 0.42 0.55 0.39 0.37 1.41
Bu4 0.31 0.33 0.39 0.48 0.30 1.45
Bu5 0.31 0.38 0.37 0.30 0.37 1.30
Average W/B similarity ratio 1.44

B. Goodall's index

Go1 Go2 Go3 Go4 Go5 W/B similarity ratio per cluster

Go1 0.72 0.36 0.41 0.41 0.37 1.86
Go2 0.36 0.60 0.40 0.51 0.45 1.38
Go3 0.41 0.40 0.68 0.33 0.50 1.64
Go4 0.41 0.51 0.33 0.96 0.36 2.37
Go5 0.37 0.45 0.50 0.36 0.87 2.06
Average W/B similarity ratio 1.86

Table 5
Centroidal values of the five clusters extracted from similarity matrices.

Attribute Cluster

A. Burnaby's coefficient

Bu1 Bu2 Bu3 Bu4 Bu5

Color, A horizon 10YR 4/3 10YR 4.5/3 10YR 4/3 10YR 4/4 2.5Y 4.5/2
Color, C horizon 10YR 5/4 10YR 5/4 10YR 5/4 10YR 5/4 2.5Y 6/3
Intermediate horizon – AC, 22 cm C, 34 cm – AC, 34 cm
Depth of RMFs, cm 34 42 64 88 55
RMF concentrations, % 12 4 9 1 3
RMF depletions, % 16 8 5 1 10
Texture classa SiL SiCL SiCL SiL SiL

Attribute Cluster

B. Goodall's index

Go1 Go2 Go3 Go4 Go5

Color, A horizon 10YR 4/3 10YR 4/3 10YR 4.5/3 10YR 4/3 2.5Y 4.5/3
Color, C horizon 10YR 5/4 10YR 5/4 10YR 5/4 10YR 5/4 2.5Y 6/3
Intermediate horizon – B, 32 cm AC, 22 cm – AC, 28 cm
Depth of RMFs, cm 30 67 46 100 51
RMF concentrations, % 7 6 4 0 7
RMF depletions, % 10 1 10 0 13
Texture classa SiCL SiL SiCL SiCL SiL

a SiL: silty loam; SiCL: silt clay loam.
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where λα are kriging weights which sum is 1.
Clusters that showed a non-constant mean were interpolated with

the Universal Kriging (UK) predictor, which models the local trend with
a polynomial regression of the Cartesian coordinates (Diggle and
Ribeiro, 2007) and convert observations to residuals before calculating

the variogram:

= +
= = =

Z x f x Z x f x( ) ( ) ( ) ( )
l l l

n

l l l0 0

2
0 1 0

2

(11)

with the constraint

Fig. 6. Variograms of Burnaby's similarity coefficient. Data were previously transformed by Gaussian anamorphosis.
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=
=

f x f x( ) ( )
n

l l1 0 (12)

where Xl are covariables; βl is the regression coefficient associated to
each covariable. The covariable X0 has the constant value 1, whereas X1
and X2 are easting and northing coordinates, respectively.

Experimental variograms were modelled using the Restricted

Maximum Likelihood Estimation (REML) method, which yields the best
parameter estimates when the sample size is less than 150 observations
and/or sampling locations are unevenly distributed in space (Marchant
and Lark, 2007). Since values in similarity vectors are not normally
distributed, they were normalized through Gaussian anamorphosis, a
mathematical function Z=Φ(Y) that relates a raw variable Z with any

Fig. 7. Variograms of Goodall's similarity index. Data were previously transformed by Gaussian anamorphosis.

G. Bragato, et al. Catena 180 (2019) 169–182

177



distribution to a Gaussian random function Y with zero mean and unit
variance by means of a transformation function Φ that gives the cor-
respondence between each one of the sorted raw data and the corre-
sponding frequency quantile in the standardised Gaussian scale (Chilés
and Delfiner, 1999). Transformation was done using the inverse of Φ
expanded into Hermite polynomials Hi(Y) monotonically increasing
within the interval defined by the minimum and the maximum of
sample values (Wackernagel, 2003).

Data were interpolated at the nodes of a 5m-mesh grid using a
circular neighbourhood with a radius of 1500m. Finally, interpolated
values were back-transformed to raw values through the Gaussian
anamorphosis functions.

Gaussian anamorphosis and geostatistical analysis were carried out
in the R software environment (R Core Team, 2016). The former was
done with the RGeostats package (Renard et al., 2017), the latter with
the geoR package (Ribeiro and Diggle, 2016). Vector and raster files for
maps were managed with the software qGis (Quantum GIS
Development Team, 2016).

2.4. Validation with auxiliary information

Internal validation procedures are not applicable to Burnaby's and
Goodall's similarity measures. Therefore we tested the results by com-
paring interpolation maps with auxiliary sources of information. The
first of them was the 1:28800-scale chorography map of Istria and
Dalmatia published in 1820 (Archivio di Stato di Trieste, 1998) and
based on 1:2880-scale cadastral maps. The part regarding Čepić Polje is
shown in Fig. 3, which reports the road network and several environ-
mental features of the area. In our investigation, we paid particular
attention to a still existing cobbled road – marked in bold in both Figs. 2
and 3 – that was located upstream of a marshy area at the mouth of
River Boljunščica. We assumed that the road was built on a position
rarely affected by floods and that it marked the transition between
present and recent alluvia, i.e. between alluvial soils characterized by
different stages of development.

The second information is related to the portions of Čepić Polje
where Tuber magnatum truffles are collected. This subterranean ecto-
mycorrhizal fungus is highly selective for the soil environment where it
grows. In fluvial plains, it is found in lime-rich, coarse loamy to fine
silty, continuously rejuvenated soils (Bragato and Marjanović, 2016). In
Čepić Polje, truffle-producing sites are specifically located on natural
levees of River Boljunščica, while lacking in the fine-textured soil on
lacustrine sediments (Bragato et al., 2010).

3. Results

Hierarchical clustering of similarity values produced the dendro-
grams of Fig. 4, which were obtained with the complete linkage cri-
terion. The evenness of permutations resulted in five most significant

clusters for both measures.
The relationship between the two classifications is summarized in

the contingency table of Table 2, which was drawn up by assigning
observations to the cluster with which they displayed the greatest si-
milarity. The overall correlation between the two classifications was
strong, as indicated by the resulting χ2 value of 186. The main com-
binations were Bu2-Go3, Bu3-Go2, and Bu5-Go5, whereas Bu4 displayed
affinities both with Go2 and Go4.

A first assessment of which of the two similarity measures was most
effective can be made on the basis of Table 3, which reports the de-
scriptive statistics of similarity vectors calculated by averaging simi-
larity values within and between clusters. The clusters obtained with
Goodall's index displayed higher maxima and larger ranges of variation
than those produced with Burnaby's coefficient. Maxima, in particular,
ranged between 0.75 and 0.96 for the former similarity measure, and
between 0.55 and 0.62 for the latter. As far as the probability dis-
tribution function is concerned, a Gaussian distribution is expected for
Burnaby's coefficient while the uniform distribution is characteristics of
Goodall's index when the set of observations is homogeneous. In the
study case, none of the clusters was skewed (Table 3), but clusters
obtained with Burnaby's method showed histograms with a slightly
bimodal behaviour, and those of Goodall's similarities deviated from
the uniform distribution (Fig. 5), both results suggesting heterogeneity
in the variance of clusters.

A more detailed analysis of the relationships between pairs of
clusters was done on the basis of the within/between clusters (W/B)
similarity matrices reported in Table 4. The within-cluster similarities
in the matrix diagonals increased from 0.37 to 0.55 of Burnaby's coef-
ficient to 0.60–0.96 of Goodall's index. The off-diagonal, between-
cluster similarities also suggested a relationship between clusters Bu2
and Bu3, Go2 and Go4, Go3 and Go5. The effectiveness of partitions can
be better assessed with the average W/B ratio: the higher it is, the better
the partition. In Table 4, this parameter equals 1.44 and 1.86 for Bur-
naby's and Goodall's similarity measures, respectively.

The results of Tables 2 and 4 help to analyse cluster centroids in
Table 5. Using the depth of RMFs as a sorting criterion related to soil
drainage, clusters Bu1 to Bu4 can be ordered in terms of increasing
drainage capacity, while Bu5 is distinguished by its more yellow hue.
Applying the same criterion to Goodall's measure, clusters can be or-
dered in the sequence Go1-Go3-Go2-Go4. Also in this case the fifth
cluster – Go5 – is characterized by a more yellow hue. It worth also
noting the presence of a subsurface B horizon in Go2 that is absent in
the related cluster Bu3.

Differences and connections between clusters concerned not only
centroids, but also the spatial variability of similarity values. After data
transformation by Gaussian anamorphosis, similarity vectors generated
the omnidirectional variograms of Figs. 6 and 7, which were fitted by
the models summarized in Table 6. Starting from the results of Table 2,
variograms can be analysed by pairs of resembling clusters. The Bu1
and Go1 variograms displayed an almost pure nugget behaviour. Since
they indicated a random variation in space, the corresponding clusters
were not considered in the interpolation step.

Distinctly different variogram shapes characterized the Bu3-Go2
pair. While the former cluster produced a bounded variogram with a
range of 840m, the latter showed a non-stationary behaviour, with
semivariances gradually increasing from a distance of 1000m. In this
case, we modelled the variogram of residuals (empty dots in Fig. 7) and
applied the UK interpolation.

Also the Bu5 and Go5 variograms showed a non-constant mean in
form of a concavity at 1400–1600m, suggesting the presence of several
similar observations in a relatively central part of the investigated area.
Following the suggestions of Myers (1988), who showed that splines
and UK are equivalent, also in this case we modelled and interpolated
them with the UK approach.

The remaining pairs of clusters originated bounded variograms that,
while allowing the application of OK interpolation, were characterized

Table 6
Variogram models and parameters.

Cluster Nugget variance Model Practical range, m Sill variance

Burnaby's coefficient
Bu1 0.852 Spherical 3375 0.192
Bu2 0.188 Exponential 1950 0.970
Bu3 0.106 Exponential 840 0.897
Bu4 0.379 Spherical 2000 0.796
Bu5a 0.468 Spherical 1540 0.551

Goodall's index
Go1 0.507 Spherical 545 0.488
Go2a 0.299 Spherical 1175 0.408
Go3 0.417 Exponential 2995 0.786
Go4 0.137 Exponential 1204 0.907
Go5a 0.250 Spherical 1500 0.812

a Model fitted to the variogram of residuals.

G. Bragato, et al. Catena 180 (2019) 169–182

178



by different values of the model parameters. The Bu2 variogram shows
a range of 2000m and a nugget variance of 0.189 that are much lower
than the values of 3000m and 0.417 of the model fitted to cluster Go3.
The relationship is reversed for Bu4/Go4 pair, with the latter showing a
shorter range and a smaller nugget variance than the former.

After the interpolation, the data were back-transformed to draw the
similarity maps shown in Figs. 8 and 9. The legends of the figures show
the different range of variation already reported in Table 3. Taking as
threshold values 0.40 for Figs. 8 and 0.60 for Fig. 9, high similarity
values characterize Bu5/Go5 clusters in the central portion, and Bu2/
Go3 in the area of the polje once occupied by the lake. The remaining
maps are characterized by the constant presence of high similarity va-
lues in the northern portion of the polje, with Bu4 and Go4 similarity

vectors showing a second small area of high values in the very south of
the investigated area.

4. Discussion

According to the results of Table 2, the two similarity measures are
strongly correlated. However, the average W/B ratio reported in
Table 4 indicates that the clusters of Goodall's similarity values were
better partitioned than those obtained with Burnaby's method. A better
performance of Goodall's index is also suggested by the wider range of
variation of values in the [0,1] interval, a result also related to the fully
probabilistic nature of this index.

Goodall's index gives better results also in terms of soil types

Fig. 8. Interpolation maps of Burnaby's similarity vectors.
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indicated by similarity vectors. The centroidal values reported in
Table 5 are explainable from the standpoint of the soil transition from
Fluvisols to Cambisols if we assign clusters Go3 and Go5 to Fluvisols,
cluster Go2 to Cambisols, and consider Go4 as a young Cambisol rarely
affected by floods. A further link to fluvial dynamics is the change of
texture between Go5 and Go3 that sets them in the frame of a de-
creasing flood energy related to an increasing distance from the riv-
erbed.

The combination of Table 5 and variogram analysis provides further
evidence of the link between of soil forming processes and the activity
of River Boljunščica.

The linear trend shown by the Go2 variogram can be easily ex-
plained with a gradual evolution of soils from Fluvisols of the reclaimed

area to Cambisols of the upper surfaces located in the northern part of
the polje. Furthermore, the spatial correspondence between the con-
vexity of variograms Bu5 and Go5, and the slight concavity displayed by
the other variograms looks connected to the halfway position of
Boljunščica mouth with respect to the former lake of Čepić. A similar
convexity was observed by Bragato (2004) in a crevasse splay that, after
a man-made partial deviation of the River Piave in the 17th century,
originated a lens of sandy Fluvisols in the middle of the present day
fluvial plain.

Clusters showing higher similarities values in the central and
southern part of Čepić Polje are related to the area of maximal seasonal
expansion of the ancient lake in Čepić. High similarity values in clusters
Bu2 and Go3 concern the portion of flood plain almost always covered

Fig. 9. Interpolation maps of Goodall's similarity vectors.
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by water, where slow sedimentation in calm water originated fine-
textured deposits. Clusters Bu5 and Go5 are instead related to the
bottom part of River Boljunščica, and similarity values larger than 0.3
(Burnaby) and 0.8 (Goodall) concerned almost all places where T.
magnatum truffles are collected (Bragato et al., 2010), i.e. the natural
levees still affected by river floodings. Unlike cluster Bu5, the map of
Go5 marks the last part of the ancient riverbed that has left a shallow,
elongated depression in the field. These four maps suggest a connection
between high similarity values and the average extension of autumn
floods that every few years occurred in Čepić Polje before its re-
clamation. Floods were strong enough to originate a preferential de-
position of coarser particles in the vicinity of Boljunščica riverbed. This
explanation is supported by the large percentage of redox depletions
recorded in their centroids (Table 5), relating clusters to the presence of
a hyporheic flow fed by the river, and the pattern of large-similarity
values in the southern part of the map, that coincide with the Boljun-
ščica riverbed present in 19th century chorography map of Fig. 3.

High similarity areas overlap in the transition areas between Bu2/
Go3 and Bu5/Go5 clusters. Gradual lateral changes in soil are the norm
in fluvial plains where floods of different energy originate vertical
layers that are heterogeneous in the average size of mineral particles. In
Čepić Polje, this process was reinforced by the periodical variation of
the lake surface – typical of polje lakes – between the maximum size
after autumn floods and the minimum size in summer.

The remaining maps were unrelated to the recent activity of River
Boljunščica. The southern boundaries of Go2 and, to a less extent, Bu3
high-similarity areas cross the 19th century road already highlighted in
Fig. 3. This detail proves that the northern portion of Čepić Polje has
rarely been flooded in the last centuries, allowing soil to develop a
Cambic B horizon. The same road crosses the area where similarity
values of clusters Bu4 and Go4 are the highest. This area is placed be-
tween soils with a well-developed B horizon and those related to River
Boljunščica and the former lake of Čepić. The results of Table 5 are
again useful in explaining the relationships between clusters. The
characteristics of the Go4 centroid are for instance intermediate be-
tween those of clusters Go2 and Go3, suggesting the presence of a
transitional type of soil in an area where occasional floods were fre-
quent enough to slow down the development of a B horizon. The same
explanation may be applied to the high-similarity spot located to the
very south of maps Bu4 and Go4. This spot overlaps the fan of a small
stream rooted on Eocene turbidites standing alone in the south-eastern
slopes of Čepić Polje. Its upper location with respect to the water level
of the ancient lake was probably responsible for the same soil devel-
opment recorded along the cobbled road.

In general, the wider range of variation characterizing Goodall's
similarity index allowed to draw less smoothed and more varied in-
terpolation maps that were capable to show in more detail the effect of
environmental processes in Čepić Polje.

5. Conclusions

The similarity maps of Čepić Polje displayed a soil pattern that is
closer to field reality of local soil processes than that usually shown in
discrete soil maps. They may help surveyors to separately consider the
distribution of soil types, to assess their relationships with biodiversity
and biological communities, and therefore to manage their use. The two
similarity measures produced comparable information about soil
characteristics and the spatial distribution of soil types in Čepić Polje,
but our investigation suggests that Goodall's similarity index originates
better partitions between soil observations in areas where soil forming
processes are mainly related to recent and current fluvial dynamics. The
spatial patterns of clusters Go3, Go4 and Go5 are, for example, very
similar, but differences related to fluvial dynamics change their suit-
ability for T. magnatum and should suggest the surveyor how to manage
the different portions of Čepić Polje. The tested approach also helps to
explain and delineate areas showing high similarities for more than one

cluster. In discrete maps the surveyor should decide whether to draw an
arbitrary boundary between mapping units or create intergrade units
difficult to be dealt with from the taxonomical point of view. In Čepić
Polje, on the contrary, we can explain some of them as transition areas
originated by spatially continuous environmental processes.

Generally speaking, the analytical sequence we investigated met
three compulsory requirements to move from field observations to soil
processes and to soil mapping: clusters were meaningful from the flu-
vial dynamics point of view; similarities displayed a structured spatial
variability; similarity maps were consistent with the soil forming factors
acting in the area. These results indicate that Goodall's similarity index
could be currently used in soil suitability evaluation procedures, al-
lowing to better exploit the data collected in the auger boring campaign
and to extend its application to relate soil types with the ecological
equilibria of biological communities. Investigations on Eocene to
Pliocene outcrops suitable for other truffle species are now close to
completion and they will help to validate the proposed procedure in
other environmental situations of the Mediterranean area.
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